悦读文网

当前位置: 首页 > 老态龙钟 > 正文

高考数学常考的知识点:立体几何

时间:2019-04-01来源:百年不遇网

  导语:在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。下面是小编为大家整理的:数学知识点。希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!

  考试内容:

  平面及其基本性质.平面图形直观图的画法;平行直线.

  直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.

  两个平面的位置关系.

  空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.

  直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.

  直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.

  平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.

  多面体.正多面体.棱柱.棱锥.球.

  考试要求:

  (1)掌握平面的基本性质。会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.

  (2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念.掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.

  (3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.

  (4)了解空间向量的基本定理;理解空间向量坐标的概念.掌握空间向量的坐标运算.

  (5)掌握空间向量的数量积的定义及其性质:掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.

  (6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.

  (7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离掌握直线和平面垂直的性质定理掌握两个平面平行、垂直的判定定理和性质定理.

  (8)了解多面体、凸多面体的概念。了解正多面体的概念.

  (9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.

  (10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图.

  (11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式.

  立体几何知识要点

  一、几种常见立体几何特点

  (一)空间的直线与平面

  ⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途.⑵斜二测画法.

  ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

  ⑴公理四(平行线的传递性).等角定理.

  ⑵异面直线的判定:判定定理癫痫病要怎么才能治疗好、反证法.

  ⑶异面直线所成的角:定义(求法)、范围.

  ⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质.

  ⒋直线和平面垂直

  ⑴直线和平面垂直:定义、判定定理.

  ⑵三垂线定理及逆定理.

  5.平面和平面平行

  两个平面的位置关系、两个平面平行的判定与性质.

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性质定理.

  (二)夹角与距离

  7.直线和平面所成的角与二面角

  ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

  面所成的角、直线和平面所成的角.

  ⑵二面角:①定义、范围、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性质定理.

  8.距离

  ⑴点到平面的距离.

  ⑵直线到与它平行平面的距离.

  ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

  ⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

  (四)简单多面体与球

  9.棱柱与棱锥

  ⑴多面体.

  ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

  ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

  正方体;平行六面体的性质、长方体的性质.

  ⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

  ⑸直棱柱和正棱锥的直观图的画法.

  10.多面体欧拉定理的发现

  ⑴简单多面体的欧拉公式.

  ⑵正多面体.

  11.球

  ⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

  ⑵球的体积公式和表面积公式.

  (三)立体几何概念及特点

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围儿童癫痫前期征兆成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  二、平面.

  1. 经过不在同一条直线上的三点确定一个面.

  注:两两相交且不过同一点的四条直线必在同一平面内.

  2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)

  3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

  [注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.

  4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向)

  三、空间直线.

  1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内

  [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)

  ②直线在平面外,指的位置关系:平行或相交

  ③若直线a、b异面,a平行于平面

  ,b与

  的关系是相交、平行、在平面癫痫病基本的治疗方法有哪些呢p>

  内.

  ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.

  ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)

  ⑥在同一平面内的射影长相等,则斜线长相­--等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)

  ⑦

  是夹在两平行平面间的线段,若

  ,则

  的位置关系为相交或平行或异面.

  2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)

  3. 平行公理:平行于同一条直线的两条直线互相平行.

  4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).

  (二面角的取值范围

  ) (直线与直线所成角

  ) (斜线与平面成角

  ) (直线与平面所成角

  ) (向量与向量所成角

  推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.

  5. 两异面直线的距离:公垂线的长度.

  空间两条直线垂直的情况:相交(共面)垂直和异面垂直.

  是异面直线,则过

  外一点P,过点P且与

  都平行平面有一个或没有,但与

  距离相等的点在同一平面内. (

  或

  在这个做出的平面内不能叫

  与

  平行的平面)

  四、直线与平面平行、直线与平面垂直.

  1. 空间直线与平面位置分三种:相交、平行、在平面内.

  2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)

  [注]:①直线

  与平面

  内一条直线平行,则

  ∥

  . (×)(平面外一条直线) ②直线

  与平面

  内一条直线相交,则

  与平面

  相交. (×)(平面外一条直线) ③若直线

  与平面

  平行,则

  内必存在无数条直线与

  平行. (√)(不是任意一条直线,可利用平行的传递性证之)

  ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)

癫痫病能不能治愈

  ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)

  ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)

  ⑦直线

  与平面

  、

  所成角相等,则

  ∥

  .(×)(

  、

  可能相交)

  3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)

  4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.  若

  ⊥

  ,

  ⊥

  ,得

  ⊥

  (三垂线定理),得不出

  ⊥

  . 因为

  ⊥

  ,但

  不垂直OA.

   三垂线定理的逆定理亦成立.

  直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)

  直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.

  推论:如果两条直线同垂直于一个平面,那么这两条直线平行.

  [注]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)

  ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)

  ③垂直于同一平面的两条直线平行.(√)

  5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.

  [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]

  ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上

  五、平面平行与平面垂直.

  1. 空间两个平面的位置关系:相交、平行.

  2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)

  推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.

  [注]:一平面间的任一直线平行于另一平面.

------分隔线----------------------------